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Shear-induced mixing in geophysical flows: does
the route to turbulence matter to its efficiency?
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Motivated by the importance of diapycnal mixing parameterizations in large-scale
ocean general circulation models, we provide a detailed analysis of high-Reynolds-
number mixing in density stratified shear flows which constitute an archetypical
example of the small-scale physical processes occurring in the oceanic interior that
control turbulent diffusion. Our focus is upon the issue as to whether the route to
fully developed turbulence in the stratified mixing layer is in any significant way
determinant of diapycnal mixing efficiency as represented by an effective turbulent
diffusivity. We characterize different routes to fully developed turbulence by the
nature of the secondary instabilities through which a primary Kelvin–Helmholtz billow
executes the transition to this state. We then demonstrate that different mechanisms
of turbulence transition characterized in these different transition mechanisms lead
to considerably different values for the efficiency of diapycnal mixing and also for
the effective vertical flux of buoyancy. We show that the widely employed value
of 0.15–0.2 for the efficiency of mixing in shear-induced stratified turbulence based
upon both laboratory measurements and similarly low-Reynolds-number numerical
simulations may be too low for the high-Reynolds-number regime characteristic of
geophysical flows. Our results show that the mixing efficiency tends to a value of
approximately 1/3 for sufficiently large Reynolds number at an intermediate value of
0.12 for the Richardson number. This is in agreement with a theoretical predictions
of Caulfield, Tang and Plasting (J. Fluid Mech., vol. 498, 2004, pp. 315–332) for
the asymptotic value of mixing efficiency in stratified Couette flows. In the high-
Reynolds-number regime, mixing efficiency is shown to vary over a considerable range
during the course of a particular shear-induced mixing event. We explain this variation
on the basis of a detailed examination of the underlying dynamics. Since values in
the range 0.15–0.2 for mixing efficiency have been extensively employed to infer
an effective diffusivity from ocean microstructure measurements and also in energy
balance analyses of the requirements of the global ocean circulation, our findings have
potentially important implications for large-scale ocean modelling. We also quantify
the errors introduced by employing the Osborn (J. Phys. Oceanogr., vol. 10, 1980, pp.
83–89) formula along with an efficiency of 0.15 to infer values for effective diffusivity,
and explain the logical underpinnings of this conclusion. One of the more important
aspects of this work from the perspective of our theoretical understanding of stratified
turbulence is the demonstration that the inverse cascade of energy, which is facilitated
by the vortex-merging process that is typical of laboratory experiments and of the
low-Reynolds-number simulations of shear flow evolution, is strongly suppressed by
increase of the Reynolds number to values typical of geophysical flows. Based on
this finding, the application of results based on low-Reynolds-number (numerical or
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laboratory) experiments to high-Reynolds-number geophysical shear flows needs to be
reconsidered.

Key words: shear layer turbulence, stratified turbulence, turbulent mixing

1. Introduction
The investigation of the mechanisms responsible for the transition of either stratified

or unstratified shear flows to turbulence can be considered one of the classical
problems of theoretical fluid mechanics. Kelvin–Helmholtz (KH) instability (Helmholtz
1868; Kelvin 1871), which is perhaps the best-studied and understood primary shear
instability, has been the subject of increasingly detailed analysis over the past several
years using theoretical methods, laboratory experiments, observational techniques
and more recently high-resolution numerical simulations. From a practical point of
view, the study of shear-induced turbulence in mixing layers has applications to the
understanding of the mixing and transport of a variety of tracers in the atmosphere
(Gossard 1990; Luce et al. 2010; Fukao et al. 2011) and for the understanding of
the transport of heat, salt, sediment and other tracers at a wide range of scales in
oceanic environments such as estuarine shear zones (Geyer et al. 2010), the deep
ocean (van Haren & Gostiaux 2010), the oceanic thermocline (Thorpe 2005) and in
oceanic density current overflows (Legg 2009).

Since shear instabilities may generate waves with wavelengths spanning a wide
range, this mechanism may play a leading role in the cascade of energy from
large-scale structures (such as barotropic or baroclinic eddies, internal tide-induced
internal waves or internal solitary waves) to the smallest scales at which momentum is
eventually dissipated due to viscous effects (Ley & Peltier 1978; Sutherland, Caulfield
& Peltier 1994; Sutherland & Peltier 1994; Smyth & Peltier 1994; Moum et al.
2003; Nikurashin & Legg 2011). Recent developments in measurement techniques
have enabled higher-resolution observations of density and velocity fields in the ocean
and have made clear the ubiquitous occurrence of intense shear instabilities in this
geophysical fluid (Geyer et al. 2010; van Haren & Gostiaux 2010). Of particular
interest to us, and the primary motivation for the present work, are the mechanisms
responsible for enhanced mixing in the abyssal ocean. We choose shear instability as
a prototype example of such mechanisms, and attempt to answer several fundamental
questions concerning shear-induced deep ocean mixing by detailed examination of the
turbulence engendered by this mechanism. Our focus will be upon density stratified
KH instability in particular as the abyssal ocean is stably stratified and the onset
of turbulence is often mediated through the excitation of internal inertial waves (the
so-called internal tide) excited by the flow over ocean bottom topography of the
barotropic tide (Aucan et al. 2006; Griffiths & Peltier 2009; Nikurashin & Legg 2011;
Salehipour et al. 2013).

Recently van Haren & Gostiaux (2012) have studied the mechanisms responsible
for the generation of turbulence and vertical mixing above a seamount by means
of moored temperature sensor measurements. They found ubiquitous ‘finger-like’
structures associated with shear instability (KH instability in this case, see van
Haren & Gostiaux (2010)) that continuously contributed to the mixing of deep-
water stratification during the down-slope tidal phase. Haren and Gostiaux calculated
an effective coefficient for vertical diffusion across regions of high shear at the
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218 A. Mashayek and W. R. Peltier

crests and troughs of low-frequency internal-tide-induced internal waves, and found
values an order of magnitude higher than those associated with the upper ocean as
determined on the basis of tracer release experiments (Polzin et al. 1997; Ledwell
et al. 2000). Haren and Gostiaux demonstrated that shear instability is indeed one of
the mechanisms responsible for enhanced abyssal mixing (as has also been suggested
by other studies such as Aucan et al. (2006), Gemmrich & van Haren (2001) and
Nikurashin & Legg (2011)), and it is on this observational basis that we consider it the
prototypical model problem for our purposes in the present paper. This mechanism
is an oceanographic analogue of the mechanism of turbulence generation in the
atmosphere by the breaking of internal waves above their topographic source of
excitation (Peltier & Clark 1979) and subsequently in the lee of topography through
KH instability of the jet that forms in the downslope region (Peltier & Scinocca 1990).

It is well known that, from a globally averaged perspective, the upwelling of abyssal
waters is required to balance the formation of deep waters in both the North Atlantic
and in the Southern Ocean. In the more traditional view of the meridional overturning
circulation of the oceans, it has been assumed that the upwelling of abyssal waters
is primarily due to enhanced diapycnal mixing in the ocean interior (Munk 1966;
Munk & Wunsch 1998). Estimates obtained on this basis for the turbulent diffusivity
required in the ocean interior and abyss to facilitate the upwelling are found to be on
the order of κv ∼ 10−4 (m2 s−1). The results of these early analyses have motivated a
large body of work dedicated to the estimation of κv as a function of depth in the
oceanic interior. Most such studies have indeed led to estimates of κv ∼ 10−4 (m2 s−1)

in the abyss but to lower values of κv ∼ 10−5 (m2 s−1) in the upper ocean thermocline
region (Ledwell, Watson & Law 1993, 1998). Recent progress in understanding of the
dynamics of the Southern Ocean, however, has revealed an alternative mechanism
that could be responsible for the upwelling of deep waters (primarily of North
Atlantic Deep Water (NADW)) to the surface, namely that due to the influence
of the wind-driven surface mixed layer (Marshall & Speer 2012). In view of this
inference, enhanced diapycnal mixing in the ocean need not be occurring throughout
the ocean interior, and may be restricted to governing the upwelling of densest waters
in the abyssal ocean (Wunsch & Ferrari 2004). In most studies which have attempted
to close the oceanic overturning circulation through energy balance analyses or by
employing thermodynamics-based approaches (Laurent & Simmons 2006) it has been
assumed that the upward buoyancy flux can be related to the rate of dissipation of
energy through a constant referred to as the ‘mixing efficiency’, denoted by E (Osborn
1980; Peltier & Caulfield 2003). For a turbulent flow in which the vertical buoyancy
flux is primarily facilitated through turbulent mixing, E is almost the same as the
flux Richardson number Rf , a parameter widely used in the oceanographic literature.
Here E (or Rf ) can be employed to relate the background stratification and energy
dissipation to a value for the effective turbulent diffusivity κv through a relation first
proposed by Osborn (1980) in the form of

κv = E

1− E

D

N2
, (1.1)

where N is the mean buoyancy frequency and D is the energy dissipation rate (both
to be defined in what follows). This relation has been widely used to infer estimates
of effective diffusivity at various ocean depths (see Thorpe (2005) for a review),
to parametrize internal wave-induced mixing in the abyssal ocean (Jayne & Laurent
2001; Laurent, Simmons & Jayne 2002) and to parametrize shear mixing in oceanic
overflows (Legg 2009). The popularity of (1.1) is mostly due to its simplicity and
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Shear instability in geophysical flows 219

to the fact that the rate of energy dissipation can be related to various measurable
quantities using available measurement techniques. It needs to be noted that often
in the literature, E /(1 − E ) is mistakenly referred to as mixing efficiency E and a
value of 0.2 is used for it, while Osborn (1980) proposed an upper bound of 0.15
for Rf (corresponding to E /(1 − E ) ∼ 0.2). The ‘universal’ value of 0.2 has been
persistently used over the past decades to infer values for the effective diffusivity.
More importantly, this canonical value has been widely used to obtain estimates of
the mechanical energy needed to power the abyssal mixing required to maintain the
observed overturning circulation of the oceans. If it were to prove necessary to employ
a different value (such as 0.1 or 0.3), this would have significant potential implications
for our understanding of this fundamental issue. Despite the general acceptance of
values in the range 0.15–0.2 for mixing efficiency, our analyses, to be discussed in
detail below, suggest that this assumption is not well-justified. In fact, there exists
both observational and theoretical evidence that the efficiency may be either smaller
or larger than 0.2 (the allowed deviations based upon analyses of the canonical shear
instability model being in excess of 50 %) and that the actual value is expected to
depend on the background stratification and may also depend on the anisotropy in
the medium (see Thorpe (2005) for references). Thus, the accuracy with which κv
is calculated from measurements is determined by the value employed for mixing
efficiency as long as the concept of mixing efficiency is employed as a basis for
determining the diffusivity.

In the present paper our intention is to study in detail, the process of transition to
turbulence of a density stratified laminar shear flow, and the properties of the turbulent
phase of the flow, such as the efficiency of mixing, isotropy of the turbulence thereby
produced and the resulting turbulent cascade of energy. Moreover, as a theoretical
counterpart to the many observation-based studies of diapycnal mixing in the abyssal
ocean, we intend to test the accuracy of the assumption that E = 0.15 and the
applicability of the widely used formula (1.1) by means of numerical experiments.
We consider KH instability to be the canonical example of primary shear instability.
This choice is motivated by the abundance of observational evidence of its occurrence
in the deep ocean and also in the oceanic thermocline. However, it is important to
note that other primary shear instabilities (or hybrid modes) may emerge in shear
layers (Carpenter, Balmforth & Lawrence 2010a; Balmforth, Roy & Caulfield 2012).
The questions we attempt to answer and the general conclusions to which we are led
will not be specific to KH instability and we expect our main conclusions to be of
relevance to stratified turbulence in the oceanic environments in which the primary
source of energy in turbulence is from shear and not convection.

After providing the appropriate theoretical background and introducing the
numerical methodology used for conducting and analysing our numerical experiments
(§§ 2.1–2.3), we begin our analyses by examination of the transition to turbulence of
a primary shear instability generated billow through a series of secondary instabilities
and explain the differences in turbulence characteristics of the mixing layers in terms
of underlying dynamical processes rather than only in terms of the background flow
parameters (§ 3). In this process we build upon our previous work, namely that
of Mashayek & Peltier (2012a,b), in which non-separable linear stability analyses
were employed to introduce a number of newly discovered secondary modes of
instability which facilitate turbulent collapse of the primary KH billow. A lexicon
of the most prominent instabilities found in these previous analyses is provided
in appendix A. The difference between Mashayek & Peltier (2012a,b) and similar
previous studies was in the relatively high Reynolds numbers considered in the
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220 A. Mashayek and W. R. Peltier

analyses, which has led to a number of new findings. In this article, we will be
discussing a suite of high-resolution fully resolved numerical simulations of mixing in
free density stratified parallel shear layers that cover a wide range of values of the
governing non-dimensional parameters. Our first goal is to verify through these direct
numerical simulation (DNS)-based analyses the theoretical findings of Mashayek &
Peltier (2012a,b) concerning the operative transition mechanisms. Second, we intend to
isolate the contribution of each of the secondary instabilities discussed in Mashayek
& Peltier (2012a,b) to turbulent collapse of the shear layer and in doing so we
will examine the validity of assumptions made in the derivation of the correlations
employed as basis for the estimates of eddy diffusivities. Once the dynamics of
transition to turbulence are explained, we turn our attention to the primary goal of
this article which is to quantitatively evaluate the influence of ‘route to turbulence’ on
turbulence characteristics such as mixing properties and the effective vertical diffusion
of buoyancy (§ 4). The numerical experiments discussed in this work are special
in the sense that they are conducted at sufficiently large Reynolds numbers (to be
defined) that allow for the appearance of new physical processes which have not
been reported in previous numerical studies (such as Cortesi, Yadigaroglu & Bannerjee
1998; Caulfield & Peltier 2000; Staquet 2000; Smyth, Moum & Caldwell 2001; Smyth
2003; Pham & Sarkar 2010) or previous laboratory experiments (for a review see
Thorpe 2005). Our work should be viewed as directed to closing the gap between
the properties of the low-Reynolds-number flows (typical of laboratory experiments
and the existing body of numerical simulations) and those of geophysical flows. As
briefly discussed by Mashayek & Peltier (2011a), there seems to be a characteristic
difference between low-Reynolds-number flows and high-Reynolds-number flows in
terms of both the transition to turbulence as well as the subsequent cascade of energy,
and the related properties of the turbulence itself. A most important outcome of this
work is to question the applicability of the results of laboratory experiments and the
related body of computational work to the problem of the parametrization of the
influence of turbulent mixing in geophysically realistic shear flows. The buoyancy
Reynolds numbers (to be defined) corresponding to cases considered in this study are
in the range of 102–103, which is considerably higher than most of previous DNSs of
shear-induced turbulence. As will be discussed, this range is well within the range of
buoyancy Reynolds number associated with oceanic flows.

2. Theoretical preliminaries
2.1. Governing equations

We study the temporal evolution of a stably stratified shear layer which is horizontally
periodic in space. The initial background profiles of velocity and density are assumed
to be of the form

Ū∗(z∗)= U0 tanh
(

z∗

h

)
, (2.1)

ρ̄∗(z∗)= ρa − ρ0 tanh
(

Rz∗

h

)
, (2.2)

where U0 and ρ0 are reference velocity and density, h is half the shear layer thickness,
and R is the ratio of the characteristic scale of velocity variation to that of the density
variation. The flow domain is described in Cartesian coordinates with x and z denoting
the streamwise and vertical directions, respectively. It is well known (e.g. Drazin &
Reid 1981) that an infinitely extended stratified shear layer is most unstable to KH
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FIGURE 1. (Colour online) Schematic view of the computational domain.

instability if the gradient Richardson number defined by

Ri(z∗)= N2/(shear)2 = −g

ρ0

∂ρ∗

∂z∗

/(
dŪ∗

dz∗

)2

(2.3)

is sufficiently small (smaller than 1/4 for stratified flows (Miles 1961; Howard 1961)).
For the velocity and density profiles considered here, the gradient Richardson number
is a minimum at the centre of the shear layer. We consider this mid-layer value,
which we refer to as Ri0, as a measure of the strength of the stratification in the
layer. The growth of the primary KH instability provides a background for growth
of the secondary instability(s) responsible for the ultimate breakdown of the flow to
turbulence.

The equations of motion, continuity (incompressibility in the Boussinesq limit) and
energy conservation in dimensionless form are

Dui

Dt
=− ∂p

∂xi
− Ri0

R
ρδi2 + 1

Re

∂2ui

∂x2
j

, (2.4)

∂ui

∂xi
= 0, (2.5)

Dρ
Dt
= 1

RePr

∂2ρ

∂x2
j

, (2.6)

where (i, j = 1, 2, 3). Our non-dimensionalization involves the following choices for
the scales of time, distance, velocity, pressure and density, respectively

t = t∗U0/h, xi = x∗i /h, ui = u∗i /U0, p= p∗/ρ0U2
0, ρ = ρ∗/ρ0 (2.7)

where ρ∗ and p∗ are departures from hydrostatic balance. It is also assumed that
the Boussinesq approximation is valid. The governing equations will be numerically
integrated using a pseudo-spectral numerical methodology which we employ to
provide DNSs of the evolution equations which are spatially and temporally resolved
so as to ensure that all relevant scales of motion are accurately represented. Figure 1
provides a schematic view of the computational domain. The streamwise (along
shear) extent of the domain is set to be equal to two wavelengths of primary KH
instability (based on linear stability theory). By enforcing periodic boundary conditions
in the streamwise (x) and spanwise (y) directions, it is assumed that the flow field
within the computational domain represents the dynamics in an almost periodic and
effectively infinitely long wave train of KH billows (similar to those observed in
titled tube experiments and recent observations). The choice of two wavelengths for
the streamwise length of the domain is made to accommodate the vortex pairing
instability, which is the fastest growing of the complete set of vortex amalgamation
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222 A. Mashayek and W. R. Peltier

instabilities (Klaassen & Peltier 1989)). The vertical extent of the computational
domain has been chosen to be Lz = 30 h. This is sufficiently large to ensure that the
flow remains unaffected by the horizontal boundaries even in cases in which pairing
occurs. The spanwise wavelength of the domain (Ly) has been chosen adaptively for
each numerical simulation in such a way as to ensure that doubling of Ly does not
impact the spanwise scales of the secondary instabilities that are able to grow on the
primary KH wave. This adaptive approach is required to enable (from a computational
cost perspective) longtime integration of the equations of motion from the initial
laminar stage of shear layer evolution through to the turbulent collapse stage and the
subsequent relaminarization.

In this study, we consider cases in the range of 750 6 Re 6 10 000 where Re is the
Reynolds number and is defined by Re = U0h/ν (ν being the kinematic viscosity).
This range corresponds to 10 < Reb < 150 where Reb is the buoyancy Reynolds
number defined as Reb = D/(νN2). For most cases considered in this study, the
minimum gradient Richardson number (which obtains at the centre of the shear layer)
is fixed at 0.12. This value is sufficiently large to enable realization of the full suite of
secondary instabilities discussed in Mashayek & Peltier (2012a,b) which characterize
the turbulence transition in a stratified layer. Since our numerical experiments exploit
the maximum computational resources available to us, considering higher stratification
levels could come at the cost of a reduced range of Reynolds number. In this study,
our primary focus is on the role of the Reynolds number. Although we will briefly
comment on the role of stratification by comparing cases with Ri0 = 0.12 and cases
with Ri0 = 0.04, we will postpone the full investigation of the role of stratification at
high Ri0 values to future work. For present purposes we will also keep the Prandtl
number (defined as Pr = ν/κ where κ is the thermal diffusivity) constant and equal
to unity. Therefore, our discussions will be most relevant to thermally stratified flows
rather than to salt stratified flows in which Pr ∼ O(100). For a discussion of the
role of Pr on secondary instability and mixing in KH billows see Mashayek &
Peltier (2012a) and Mashayek & Peltier (2011b). The influence of this parameter on
the evolution of initially two-dimensional KH billows has previously been discussed
in Klaassen & Peltier (1985a). We will also assume R = 1.1 (Caulfield, Yoshida
& Peltier 1996)) to avoid further complicating the parameter space over which our
numerical experiments are conducted. It is important to note, however, that larger
values of R along with Ri0 > 0.25 might give rise to other primary instabilities
such as Holmboe instability (Holmboe 1962; Smyth, Klaassen & Peltier 1988; Smyth
& Peltier 1991; Carpenter, Lawrence & Smyth 2007; Carpenter et al. 2010b) or
Taylor–Caulfield instability (Taylor 1931; Caulfield 1994). Note that while we have
tried to be consistent with most of the existing literature concerning shear instabilities
regarding the definition of Re, there are discrepancies in the literature in the way that
Re is defined. Therefore, care must be taken in direct comparisons of our results with
those of others. For example, our Reynolds numbers should be multiplied by two to
obtain the values cited in the work of Smyth & Winters (2003), Smyth, Carpenter &
Lawrence (2007), Pham, Brucker & Sarkarand (2009) and Pham & Sarkar (2010).

The simulations are initialized by addition of incompressible white noise to the
velocity field and white noise with zero mean to the density field. This will ensure
that none of the secondary instabilities is favoured over others. Free-slip impermeable
boundary conditions on the velocity components are applied at the top and bottom
boundaries of the domain, together with a condition of zero density flux. The validity
of the numerical experiments will be examined using diagnostic equations which will
be introduced in the next section. Moreover, as an independent test for validation
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Re Ri0 Pr Lx Ly Lz Nx Ny Nz

750 0.04 1 28.56 4 and 8 30 320 64 and 128 600
750 0.085 1 28.56 4 and 8 30 320 64 and 128 600
750 0.12 1 28.56 4 and 8 30 512 96 and 192 800
1000 0.12 1 28.54 3.5 and 7 30 768 96 and 192 800
2000 0.12 1 28.54 3.5 and 7 30 768 96 and 192 800
4000 0.04 1 28.54 3 30 1024 128 1216
4000 0.12 1 28.54 3 30 1024 128 1216
6000 0.12 1 28.54 3 30 1024 128 1216
8000 0.12 1 28.54 3 30 1024 128 1216
10000 0.04 1 28.54 3 30 1280 160 1216
10000 0.12 1 28.54 3 30 1280 160 1216

TABLE 1. Details of the 3D numerical experiments.

of the numerical tools used in this work, results of Caulfield & Peltier (2000)
(which were obtained using a different numerical toolbox) were reproduced prior
to performing the numerical experiments that form the basis for analysis in this work.
Table 1 provides the required information concerning the three-dimensional numerical
experiments to be analysed in subsequent sections.

2.2. Energetics
To facilitate detailed analysis of the outcomes of the numerical simulations we employ
analyses similar to Caulfield & Peltier (2000). We begin by averaging the 3D velocity
field, u(x, y, z, t), on the horizontal xy plane so as to define the field

ū(z)= 1
LxLy

∫ Lx

0

∫ Ly

0
u dx dy. (2.8)

The two-dimensional perturbation to this height-dependant horizontally averaged field
can then be calculated by subtracting ū(z) and averaging in the spanwise direction:

u2D =
∫ Ly

0
[u− ū(z)] dy. (2.9)

Here u2D represents the velocity field associated with 2D perturbations such as the
primary KH wave itself, 2D vortex merging and 2D secondary shear instability (SSI)
of the braid (see Appendix for definitions and see Mashayek & Peltier (2012a) or
Mashayek & Peltier (2012b) for further details). The velocity field associated with 3D
perturbations can be calculated from the following definition

u3D = u− u2D − ū(z). (2.10)

With the velocity properly decomposed into ū, u2D and u3D, the total kinetic energy
of the flow (K ), the average kinetic energy of the mean background flow ( ¯K ), the
kinetic energy associated with the spanwise-averaged 2D perturbations (K2D) and the
average kinetic energy of 3D perturbations (K3D) can be defined as

K (t)= ¯K +K2D +K3D = 1
LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
[u2 + v2 + w2] dz dy dx, (2.11)

¯K = 1
Lz

∫ Lz

0

ū2

2
dz, (2.12)
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K2D = 1
LxLz

∫ Lx

0

∫ Lz

0
[u2

2D + w2
2D] dz dx, (2.13)

K3D = 1
LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
[u2

3D + v2
3D + w2

3D] dz dy dx. (2.14)

The evolution equation for the total kinetic energy can then be shown to be (Klaassen
& Peltier 1985b)

σ = 1
2K

d
dt

K =−H −D, (2.15)

where H is the buoyancy flux defined by

H = Ri0
2K R

1
LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
(ρw) dz dy dx, (2.16)

and D is the positive-definite viscous dissipation term defined by

D = 1
2K Re

1
LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
(∇u)2 dz dy dx. (2.17)

According to (2.15), a positive buoyancy flux is at the cost of K . Similarly, the
dissipation term plays the role of a sink for the kinetic energy reservoir. Right-
and left-hand sides of (2.15) can be calculated independent of each other and their
difference can be treated as a measure of the accuracy of the numerical simulations.
For all of the flows whose properties are listed in table 1 this difference was found a
posteriori to be smaller than one part in a million.

An equation for the evolution of 3D perturbations can also shown to be of the form
(Klaassen & Peltier 1985b)

σ3D = 1
2K3D

d
dt

K3D

=R3D +S h+A −H3D −D3D, (2.18)

where the first term represents extraction of energy from the background mean shear
by means of Reynolds stresses and is defined as

R3D =− 1
2K3D

1
LxLyLz

×
∫ Lx

0

∫ Ly

0

∫ Lz

0

(
u3Dw3D

∂Ū

∂z

)
dz dy dx, (2.19)

the second term in (2.18) represents extraction of energy from the background KH
billow and is given by

S h3D =− 1
2K3D

1
LxLyLz

×
∫ Lx

0

∫ Ly

0

∫ Lz

0

(
u2

3D

∂ukh

∂x
+ w2

3D

∂wkh

∂z

)
dz dy dx, (2.20)

the third term represents the stretching deformation of the 3D perturbation field and is
defined as

A =− 1
4K3D

1
LxLyLz

×
∫ Lx

0

∫ Ly

0

∫ Lz

0
(u2

3D − w2
3D)

(
∂u2D

∂x
− ∂w2D

∂z

)
dz dy dx, (2.21)

Finally H3D and D3D are the buoyancy flux and viscous dissipation terms associated
with three-dimensional perturbations which are defined respectively as

H3D = Ri0
2K3D

1
LxLyLz

×
∫ Lx

0

∫ Ly

0

∫ Lz

0
ρ3Dw3D dz dy dx, (2.22)
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D3D = 1
2ReK3D

1
LxLyLz

×
∫ Lx

0

∫ Ly

0

∫ Lz

0
(∇u3D)

2) dz dy dx. (2.23)

Similar to (2.15) and (2.18) can be used as a measure of the accuracy of the
simulations, particularly during the turbulent phase of the flows. This can be exploited
by comparing the left- and right-hand sides of (2.18) which can be independently
calculated from simulation results. This is done in appendix B for two sample cases.
For all cases of table 1 the right- and left-hand sides of (2.18) were found to be
identical to within a tolerance of 0.001 %.

Following Caulfield & Peltier (2000) and Peltier & Caulfield (2003), the time rate
of change of the total mechanical energy of the system under consideration, E, can be
written as

dE

dt
= dK

dt
+ dP

dt
, (2.24)

where K and P are the total kinetic and potential energies. The potential energy is
defined as

P = Ri0
R

1
Lz
×
∫ Lz

0
zρ̄ dz, (2.25)

and the time rate of change of the potential energy can be written as

dP

dt
=H +Dp, (2.26)

where Dp, a strictly positive quantity, is the rate at which the potential energy of a
statically stable and motionless density stratification would increase through conversion
of internal energy to potential energy. In our computational procedure, this can be
calculated from

Dp = Ri0(ρbottom − ρtop)

LzRePr
, (2.27)

where ρbottom and ρtop are the non-dimensional densities at the top and bottom
boundaries of the domain. As will be clear from (2.15), the total kinetic energy of
the system can be decreased through net upward motion of dense fluid (i.e. positive
H ) which leads to an increase in the potential energy of the system as expressed
by (2.26). Two mechanisms responsible for the loss of the total mechanical energy of
the system to internal energy are the viscous dissipation (D) and Dp. In other words,
combining (2.24), (2.15) and (2.26) gives

dE

dt
=D +Dp, (2.28)

where the right-hand side is negative-definite (|D | � |Dp|).
The potential energy itself can be divided into two parts namely the background

potential energy, PB, defined as

PB = Ri0
R

1
Lz
×
∫ Lz

0
zρB(z) dz, (2.29)

and the available potential energy, PA. In which case we may write

P =PB +PA. (2.30)

The background density profile ρB(z) is associated with the minimum (background)
potential energy of the system (Caulfield & Peltier 2000; Winters et al. 1995) and can
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226 A. Mashayek and W. R. Peltier

only be increased through irreversible mixing processes or by the diffusion term Dp.
By denoting the irreversible mixing by M , we can write

dPB

dt
=M +Dp. (2.31)

Combining this with (2.26) and (2.30) we may therefore write

dPA

dt
=H −M =S . (2.32)

The available potential energy is that part of the total potential energy which is
‘available’ to be converted back into kinetic energy. Hence, the right-hand side of
(2.32), S , simply represents the reversible stirring of the flow whereas the right-hand
side of (2.31) represents irreversible mixing. Using the definitions of mixing and
stirring, and by combining (2.15) and (2.32) we may therefore write

dK

dt
=−S −M +D . (2.33)

Equation (2.33) simply demonstrates that the kinetic energy can be changed through
stirring of the fluid, irreversible mixing of the fluid or viscous dissipation. The
first term on the right-hand side of (2.33) represents a reversible process whereas
the remaining two terms represent irreversible processes. Therefore, an instantaneous
mixing efficiency can be defined as the ratio of the rate at which kinetic energy is lost
to mixing, and the rate at which it is lost to both mixing and dissipation:

Ei = M

M −D
. (2.34)

By definition, Ei is smaller than 1. Similar to Caulfield & Peltier 2000, the cumulative
mixing efficiency (a quantity which can be used for comparison to experiments) is
defined as

Ec =

∫ t

0
M (t′) dt′∫ t

0
M (t′) dt′ −

∫ t

0
D(t′) dt′

. (2.35)

In the analyses which follow in the subsequent sections, we will further employ a
‘post-transition cumulative’ mixing efficiency, E 3D

c which is defined by

E 3D
c =

∫ t

t3D

M (t′) dt′∫ t

t3D

M (t′) dt′ −
∫ t

t3D

D(t′) dt′
, (2.36)

where t3D is the time at which the 3D perturbations saturate and marks the onset of
fully turbulent flow and so (2.36) represents the efficiency of mixing in the turbulent
phase of flow evolution. As mentioned in the introduction, E 3D

c ≈ Rf where Rf is the
flux Richardson number.

2.3. Spectral representation
To compare the evolution of secondary instabilities in our simulations with predictions
of the secondary stability analysis of Mashayek & Peltier (2012a,b), it is useful to
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obtain spectral representations of the flow fields within particular intervals of time
within each simulation. To do this, we employ the Fourier transform of the streamwise
vorticity field, ωx, to obtain a discrete spectral representation of the field as:

ωx(x, y, z, t)=
N∑

n=−N

cn(dn, x, z, t)eidny, (2.37)

where cn are the Fourier coefficients defined by

cn(dn, x, z, t)= 1
Ly

∫ Ly

0
ωxe−idny dy, (2.38)

and dn = 2πn/Ly is the spanwise wavenumber. The relative importance of various
spectral components can be represented by the normalized spanwise power spectral
density P(dn) defined as

P(dn, t)≡
1

LxLz

∫ Lx

0

∫ Lz

0
|cn(dn, x, z)|2 dz dx

N∑
n=0

1
LxLz

∫ Lx

0

∫ Lz

0
|cn(dn, x, z)|2 dz dx

. (2.39)

As we are interested in the early stages of growth of secondary instabilities which
originate inside the cores and on the braid of a KH billow, we perform such Fourier
decompositions for the core region, the braid region, and the total flow field separately.
The resolution employed for all three regions in our analyses is N = 128.

Furthermore, to rigourously test the prediction of Mashayek & Peltier (2012a)
regarding suppression of an inverse cascade of energy through vortex pairing as a
consequence of the emergence of a large number of rapidly growing three-dimensional
instabilities at high Reynolds number, we perform a streamwise decomposition of
the flow field. After spanwise-averaging of the 3D density field, we decompose the
resulting 2D field as

ρ2D(x, z, t)=
M∑

n=−M

an(bn, z, t)eibnx, (2.40)

where the an are the Fourier coefficients and bn = 2πn/(2Lx) is the streamwise
wavenumber. At any time of interest, the relative importance of various spectral
components can be represented by the normalized streamwise power spectral density
P(bn) defined as

P(bn, t)≡
1
Lz

∫ Lz

0
|an(bn, z)|2 dz

M∑
n=0

1
Lz

∫ Lz

0
|an(bn, z)|2 dz

. (2.41)

By choosing the streamwise domain extent to be 2Lx for Fourier decomposition, wave
one will correspond to the pairing mode and wave two to the primary KH wave. We
employ the resolution M = 512 for this series of calculations.
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t t t
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FIGURE 2. Time evolution of K /K (0) in (a), K2D/K (0) in (b) and K3D/K (0) in (c)
for Re = 750 (solid lines), Re = 1000 (dashed line) and Re = 2000 (dashed-dotted line).
Circles in (b) correspond to t2D. Two circles on each curve in (c) correspond to t2D and t3D,
respectively.

3. The influence of Reynolds number
As discussed briefly in Mashayek & Peltier (2011b), there appears to be a change in

characteristic properties of a mixing layer once the Reynolds number is increased so as
to be sufficiently in excess (the exact value depending on Pr as discussed in Mashayek
& Peltier (2011b)) of those typically achieved in laboratory experiments. This change
is associated with the emergence of a ‘zoo’ of secondary instabilities (as described
in Mashayek & Peltier (2012a,b)) which exist at high Re, some of the inhabitants
of which have not been observed in laboratory experiments but which were expected
to be observed in geophysical shear layers. We will therefore divide the cases to
be discussed in this section into ‘low-Reynolds-number’ and ‘high-Reynolds-number’
groups. To focus on the role of Re, we will also keep Ri0 and Pr constant at 0.12 and
1, respectively, for the purpose of the initial analyses to be discussed in this paper. The
influence of Ri0 will be discussed in the subsequent section whereas the cumulative
influence of all three parameters will be discussed in the penultimate section.

3.1. The low-Reynolds-number regime
In this subsection we analyse three different cases with Re = 750, 1000 and 2000.
Figure 2 shows plots of the time evolution of the normalized total kinetic energy (K ),
the normalized kinetic energy associated with the primary KH wave (K2D) and the
normalized kinetic energy associated with three-dimensional perturbations (K3D) for
all three Reynolds numbers. In each case, the growth of the primary KH billow is at
the expense of the background kinetic energy. We refer to the time at which the KH
wave reaches its maximum kinetic energy as t2D (shown by circles on curves in the
middle panel). At approximately the same time as t2D, three-dimensional perturbations
begin to grow. As discussed in Mashayek & Peltier (2012b), 3D perturbations extract
their energy primarily from the primary KH billow (note the near-flat K curves and
the sloping K2D curves between t = 60 and t = 100). At a time which we refer to
as t3D, and which is shown by circles on the curves in figure 2(c), 3D perturbations
saturate and this marks the onset of the fully turbulent phase of flow evolution. The
noticeably short time between t2D and t3D is the transition phase, in which a number of
2D and 3D instabilities emerge on the mostly 2D background KH wave, interact and
break down the flow into turbulence.

A comparison between the three cases shown in the figure demonstrates that an
increase in Re does not influence the growth of the primary KH wave significantly.
This is expected as the growth rate of the primary wave is mainly a function of the
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FIGURE 3. Spanwise vorticity isosurface (green) of ωy = 0.72 in top row and streamwise
vorticity isosurfaces of ωx = 0.2 (red) and ωx = −0.2 (blue) in bottom row for Re = 750,
Ri0 = 0.12 and Pr = 1 (t2D = 58 and t3D = 143). Note that the boxes enclosing the KH billows
do not represent the computational domain. For dimensions of the computational domain see
table 1.

FIGURE 4. Same as figure 3 but for Re= 1000, Ri0 = 0.12 and Pr = 1 (t2D = 60 and
t3D = 131).

background stratification (see Mashayek & Peltier (2012a) and Corcos & Sherman
(1976) for details). The growth of 3D instabilities, however, is influenced by the
increase in Re (as expected based on the stability analyses of Mashayek & Peltier
(2012a,b)). Figure 2(c) shows that with increase in Re, 3D perturbations emerge earlier
and grow faster, causing the transition time window to contract.

Figures 3 and 4 show plots of vorticity isosurfaces for the Re = 750 and 1000
cases at various times during flow evolution. Owing to the great similarity between
the Re = 1000 and 2000 cases, vorticity plots for the latter case are not presented.
The first column in each figure illustrates the stages of emergence of the secondary
convective instability (SCI) in the cores of the KH billows, the mode of instability first
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identified in the analyses of Klaassen & Peltier (1985b). The subsequent panels in the
figures show evolution of the SCI-induced convective rolls which are aligned with the
background shear. The interaction between these rolls leads to higher-order instabilities
and ultimately breakdown of the flow into turbulence.

Panels corresponding to times t = 170 and 228 in figure 3 reveal an upscale cascade
(doubling of the wavelength) of energy from the scale of the primary KH wave. This
is a somewhat suppressed form of the pairing instability. Although this is difficult to
observe in the vorticity plots, it can be detected in the K2D plot in figure 2 in the form
of a rapid increase in K2D at the expense of both K and K3D. The same behaviour
is observed at Re = 1000 and 2000 in figure 2. It should be noted that this upscale
turbulent cascade is already somewhat different from the pairing instability observed
frequently in two-dimensional simulations of KH waves, or of 3D simulations at
even lower Reynolds numbers. In two-dimensional (or low Re) pairing, vortex cores
orbit each other and thereby contribute greatly to preturbulent vertical mixing, and
extract significant amounts of energy from the background flow and from smaller
perturbations. As shown in Mashayek & Peltier (2012b), preturbulent pairing prohibits
various secondary instabilities from growing by draining their source of kinetic energy.
The turbulent-phase pairing illustrated in figures 3 and 4 on the other hand has a
mild effect on the energy budgets of other 3D perturbations, and occurs in the already
turbulent phase of the flow, and thus assists the relaminarization process rather than
the transition to turbulence. It is well-known that the pairing instability is suppressed
by an increase in background stratification due to suppression of vertical motion.
However, a rather new result, and one which was briefly discussed in Mashayek &
Peltier (2011b), is that at sufficiently high Reynolds numbers, early emergence and
rapid growth of a number of 3D secondary instabilities destroy the coherence of
the large-scale structure of the primary KH wave, thereby preventing pairing from
occurring. This was conjectured by Mashayek & Peltier (2012b) and will be verified in
the subsequent section when we discuss the high-Re cases.

We are now in a position to make quantitative comparisons between results of our
3D numerical simulations and the non-separable linear stability analyses of Mashayek
& Peltier (2012a). To do so, we include two plots from that study in figure 5 for
a case with Re = 1000, Pr = 1 and Ri0 = 0.12. Figure 5(a) compares growth rates
of various modes of secondary instability which could conceivably grow on the
background KH wave. Note that the analyses in Mashayek & Peltier (2012a) are
frozen-in time analyses, meaning that at each time, it is assumed that the background
KH wave evolves much more slowly than the amplifying secondary modes. This
assumption is well-justified in this context due to the existence of a clear separation
of time scales as discussed in Mashayek & Peltier (2012a). Figure 5(a) should be
interpreted as follows: at each specific time, the instability with the largest growth rate
has the highest probability of emerging in the flow. Therefore, during the transition
period, SCI and stagnation point instability (SPI) have the highest probability of
emerging, while the probability of occurrence of SSI of the braid decreases with
time (because of the increase in the rate of velocity strain at the stagnation point
due to growth of the KH vortex cores), and pairing instability remains active but
only weakly so. As demonstrated previously in the 3D simulations illustrated in
figure 3, SCI indeed emerges as the dominant mode of instability, and the pairing
instability manifests itself only weakly and only in the turbulent phase of the flow.
Less obvious in figure 3 is that SPI also emerges, although briefly, in flow evolution
of the Re = 1000 case. To illustrate this, we plot spanwise vorticity on a slice passing
through the middle of the domain for Re = 1000 and also for Re = 2000 in figure 6.
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FIGURE 5. (Colour online) (a) The results of the stability analysis for fastest growing mode
of various instabilities (see appendix A for a view of instability types) during evolution of
case Re = 1000, Ri0 = 0.12 and Pr = 1: the solid curve with filled circles for SCI with
d = 8.5, the solid line with open circles for SSI with d = 0, the solid line with diamonds for
the pairing instability and the solid line with filled triangles for SPI with d = 7. The symbols
show the actual data points for which the analysis has been done while the lines are spline fits.
The vertical dashed lines shows t2D. (b) Growth rate versus spanwise wavenumber, d, for the
SPI mode (dashed-dotted line) and the SCI mode (solid line) both at t = 75.

–1.5 –0.5 0.5 1.5

–1.5 –0.5 0.5 1.5

–1.5 –0.5 0.5 1.5

–1.5 –0.5 0.5 1.5

FIGURE 6. Contour plots (with and without streamlines overlain) of ωz on the y= Ly/2 plane
for a time before SCI-induced turbulent collapse of the billow for Re = 1000 (left column)
and Re= 2000 (right column).

Streamlines are also included in the figure to show the formation of a recirculating
region (characteristic of the SVBI–SPI family of instabilities) at the stagnation point of
the train of KH billows. Although this mode does not survive the turbulent collapse of
the billow for Re= 1000 or 2000, comparison between the two cases in figure 6 shows
that increase in Re promotes this mode. It will be shown that for higher Reynolds
numbers, SPI plays an important role in transition to turbulence of the mixing layer.

All of the secondary instabilities for which results are presented in figure 5(a) exist
over a range of spanwise wavenumbers, denoted by d. While SSI and pairing have
their fastest growth rates for d = 0 (i.e. when they are 2D), SCI and SPI are highly
3D. Figure 5(b) shows plots of growth rate versus wavenumber for the two instabilities
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FIGURE 7. Case Re = 1000, Ri0 = 0.12: variation of various components (total in solid line,
core in dashed line and braid in dashed-dotted line) of PSD P̂(dn, t) against the spanwise
wavenumber dn in left column and streamwise vorticity (ωx) contours on a plane normal to the
x-axis and passing through the centre of the core (b,e,h) and on a plane normal to the x-axis
and passing through the braid stagnation point (c,f,i). The first and third rows correspond to
t = t2D = 60 and t = t3D = 131, respectively, and the middle row corresponds to t = 74 which
is a time between t2D and t3D. Times t2D and t3D are shown in figure 2 with circles.

which have the highest probability of emerging according to figure 5(a), namely the
SCI and the SPI modes. Both curves correspond to a time t = 75 which is a time
within the transition period (i.e. between t2D and t3D). Both instabilities seem to be
fastest growing at d ∼ 5–6, with the spanwise wavenumber for SPI and its growth
rate being slightly smaller than those of the SCI. The left column of figure 7 shows
plots of the spanwise-averaged power spectral density (PSD) of streamwise vorticity
at three different times spanning the transition period for Re = 1000. Each plot in
the left column includes three curves, one for the spectrum averaged over the vortex
core region (dashed line), one for the braid region (dashed-dotted line) and one for
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the total KH billow (solid line). The other two columns of the figure also show filled
contour plots of the streamwise vorticity on a plane passing through the middle of the
core (middle column) and on a plane passing through the braid stagnation point (right
column). The first row of the plot corresponds to t2D and illustrates the early stages of
formation of secondary instabilities (note the difference in colourbar values from the
first to the second and third rows). By time t = 75 in the middle row, SCI has fully
evolved in the vorticity layers inside the vortex core with a spanwise wavenumber
of d ∼ 5.5, in excellent agreement with the theoretical prediction of figure 5(b). In
the braid region (see right panel, middle row), the power spectrum shows a peak at
d ∼ 5.5, pointing to crossing of the SCI-induced vortex tubes (see the left bottom
panel in figure 3) through the braid. However, there seems to be some activity at
smaller wavenumber occurring at the stagnation point at a lower value of d. As shown
in figure 6, this is associated with the SPI attempting to emerge on the braid, only for
it to run out of time as a consequence of the turbulent collapse of the billow due to the
rapid growth of the SCI. This can be clearly seen by virtue of the domination of the
total PSD curve by that of the core in the left panel for the t = 75 row in figure 7. By
t = t3D (bottom panel of figure 7), three-dimensional perturbations have saturated, the
flow is turbulent, energy is well distributed over smaller scales, and the flow is well on
the way to relaminarization due to continuing dissipation of energy in the absence of
external forcing.

As the final stage in our analysis of the low-Reynolds-number cases, we explore
the exchange of energy between reservoirs of kinetic and potential energies of the
total flow field, and also investigate the sources of energy for 3D perturbations in
detail. Figure 8 shows plots of the potential energies (left column) and energetics
of the 3D perturbations (right column) for Re = 750 and 1000. The potential energy
plots can be best interpreted if considered together with the data show on figure 2.
These results demonstrate that, as the primary KH billow rolls up, energy is transferred
into the potential energy reservoir mostly in the form of available potential energy.
During this phase, little mixing occurs and so the background potential energy does
not rise significantly. Once the vortex cores grow sufficiently large, however, PB rises
rapidly due to two factors: first, by extracting energy from the background kinetic
energy reservoir through enhanced molecular diffusion inside the vortex cores which
is facilitated by a significant increase in the area of the contact surface between light
and heavy fluid; second, shortly after t2D, 3D perturbations grow rapidly, extracting
their energy primarily from the available potential energy reservoir as is clearly shown
by the decrease in the PA curve. Growth of 3D perturbations is associated with the
diapycnal mixing of light and heavy fluid which contributes to the increase in PB. A
second increase in available potential energy (and, hence, in the total potential energy)
is marked by the arrows and corresponds to the turbulent-phase upscale cascade which,
as mentioned earlier, occurs at the expense of the kinetic energy of the background
shear flow and also leads to a slight reduction in energy transfer into small-scale 3D
instabilities.

The rightmost panels of figure 8 illustrate the decomposition of the growth rate
of the 3D perturbations (σ3D shown by solid black line) into the various components
defined in (2.18). During the early stages of growth of 3D instabilities, σ3D is strongly
dominated by the contribution of the buoyancy flux. This is due to dominance of
the buoyancy-driven SCI instability inside the cores. Moreover, 3D instabilities extract
some energy from the shear associated with the primary KH billow (the S h term),
and from the background flow through the action of the Reynolds stresses (the R3D

term). Some of the energy of the 3D perturbations is lost due to the action of the
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FIGURE 8. (a,c) Time variation of calibrated total potential energy (P(t) − DP t −P(0))
in solid line, calibrated available potential energy (PA(t) −PA(0)) in dashed-dotted line and
calibrated background potential energy (PB(t) − DP t −PB(0)) in dashed line. (b,d) Time
variation of various terms of (2.18). The vertical dashed lines in the right panel represent t2D
and t3D. Time period beyond t3D can be considered as most relevant to the Osborn formula
given in (1.1).

stretching deformation (the A term) because of the existing anisotropy in the flow
field. Figure 8 shows that by the time t3D, the contributors to σ3D have decayed
significantly, leaving a balance between energy extraction from the background shear
by means of Reynolds stresses, the energy loss through viscous dissipation, the
turbulent buoyancy flux and the anisotropy term, with the latter two contributions
being much less than the former two. This balance is maintained throughout the
turbulent phase of the flow. Had the anisotropy term decayed to zero in the turbulent
phase of the flow, the balance between shear production, dissipation and buoyancy flux
would be exactly that assumed in derivation of the Osborn formula given by (1.1),
and the ratio of buoyancy flux to the production term would be the flux Richardson
number. However, the fact that the turbulent phase anisotropy term is of the same
order as the buoyancy flux term (as can be seen in the figure) indicates that the
use of (1.1) to infer an effective diffusivity would involve some error due to the
neglect of the anisotropy. This error will be quantified in subsequent sections. It is
also important to note that prior to t3D, a considerable amount of mixing occurs which
is due to enhanced diffusion facilitated by the roll-up of the KH vortex cores. This
portion of the vertical flux is often missed in the inference of vertical diffusivity values
from observational data, as a consequence of two contributing factors: first, common
correlations which relate the measured dissipation to flux (such as (1.1)) only consider
the fully turbulent phase of the flow, and second, preturbulent roll-up of KH waves can
go undetected by microstructure measurement techniques.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

or
on

to
, o

n 
30

 A
ug

 2
01

7 
at

 1
8:

51
:0

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

17
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.176


Shear instability in geophysical flows 235

t t

0.92

0.96

0 50 100 150 200
10–4

10–3

10–2

0 50 100 150 200

10–6

10–5

10–4

10–3

10–2

100 200
t

0 300
0.88

1.00(a) (b) (c)

FIGURE 9. Same as figure 2 for Re= 4000 (thick solid lines), Re= 6000 (dashed line),
Re= 8000 (dashed-dotted line) and Re= 10 000 (thin solid line).

3.2. The high-Reynolds-number regime
We next turn our attention to cases with higher Reynolds numbers. Specifically, we
shall explicitly consider the variations of the results for the values Re = 4000, 6000,
8000 and 10 000 all at Ri0 = 0.12 and Pr = 1. Figure 9 illustrates the evolution of
the various compartments of kinetic energy for the four cases. In general, the graphics
are organized in the same way as those in figure 2: increase in K2D (at the expense
of the kinetic energy of the background flow) due to growth of the primary KH
wave, followed by rapid growth in K3D facilitating transition to turbulence. Certain
important differences exist, however, between the higher Re cases of figure 9 and
those of figure 2. At lower Re, three-dimensional perturbations begin to grow shortly
after saturation of the primary KH billow, whereas at higher Re, they initiate earlier
during the roll-up of the KH billow (noting that the first circle on lines in figure 9(c)
represents t2D). This implies that 3D instabilities can modify the primary KH wave on
a global or local scale (depending on the type of growing 3D modes) at early stages
of its evolution. This is consistent with predictions of Mashayek & Peltier (2012b)
which showed that increase in Re leads to increase in growth rate of most of the
unstable secondary instabilities and also leads to the possibility of earlier emergence
of secondary modes during flow evolution. As will be described later, this might have
important implications for the interpretation of observations of shear instabilities in
geophysical flows. Two additional points can be made by comparing figures 2 and 9:
first, although at lower Re the growth rate of K3D increases with Re, it seems that
once Re is sufficiently high this growth rate saturates, and K3D grows to its maximum
from a negligible value in a very short period of time; second, the second peak in K2D,
which is associated with a turbulent-phase upscale cascade (an apparently weak form
of vortex pairing), becomes less significant with the increase in Re. This is because
the increase in Re promotes earlier and faster growth of a number of 3D modes
(the number of which itself increases with Re; see Mashayek & Peltier (2012a)) and
thereby, efficiently destroys the large-scale coherent structure of the KH wave which is
necessary for accommodation of the pairing instability. The dependence of the degree
of suppression of the pairing instability with increase in Re will be examined in detail
in the next section.

Figure 10 shows plots of streamwise and spanwise vorticity isosurfaces at various
times between t2D and t3D for each of the cases we are considering. Figure 11 shows
the corresponding plots of PSD, as well as contour plots of vorticity on planes passing
through the braid and core regions. In what follows, we will interpret these two figures
together to discuss the differences in the evolution of the flow for each Reynolds
number.
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0 1 2

0 1 2

FIGURE 10. Same as figure 3 but for Re = 4000, 6000, 8000 and 10 000. Density contours
are shown for the y = Ly/2 planes for Re = 6000 and 8000 cases. In the last panel of the
bottom row, only blue isosurfaces are shown for better visual presentation of the streamwise
vorticity, ωx.

For Re = 4000, two 3D modes begin to grow shortly after t2D. SCI grows in the
cores while a stationary (with respect to the primary KH billow) vortex forms at the
stagnation point on the braid due to emergence of SPI. Inspection of the PSD for this
case shows that the two modes (SCI and SPI) have different spanwise wavenumbers,
with that of the SCI being larger. Moreover, as one would expect, most of the power in
the spectrum for the total flow field is concentrated in the modes associated with the
core region. The middle and right panels in the first row of figure 11 show growth of
convectively unstable rolls in the vorticity layers inside the cores, as well as the SPI
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FIGURE 11. Same as figure 7 for Re = 4000, 6000, 8000 and 10 000. Times of plots for
each Reynolds numbers is chosen to be within the period of rapid rise in K3D shown in
figure 9(c).
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vortex (with a different wavenumber) forming at the braid stagnation point. The core
curve in the PSD plot has a secondary peak (at d ∼ 5) which is the same wavenumber
as that of the SPI vortex on the braid. This is not coincidental: as discussed in
Mashayek & Peltier (2012a), because the SPI can interact with the largest vorticity
bands inside the cores (which host the LCVI; see figure 23 in appendix A). The
interaction between the two gives rise to a non-local mode which Mashayek & Peltier
(2012a) refer to as SVBI (see appendix A), which leads to formation of a SPI vortex
on the braid as well as deformation of the vorticity bands inside the cores which
have approached the stagnation point due to growth of the vortex cores. This further
confirms the prediction of Mashayek & Peltier 2012b that SVBI is a combination of
SPI and LCVI (or, alternatively, one might consider SPI and LCVI as manifestations
of SVBI).

Once Re is increased to Re = 6000, SSI of the braid joins the group of 3D
instabilities already observed at Re = 4000. As shown in the right-most panel in
the second row of figure 10 (which shows ωy on a slice passing through the middle
of the domain), SPI will be seen to look just like an SSI vortex from this perspective.
However, it should be noted that the two instabilities are of different origins (SSI
is shear-induced while SPI extracts its energy from the background strain field), and
these modes have different wavenumbers (SSI is nearly 2D while SPI is 3D as shown
in the left and right panels of figure 11). The SSI vortices propagate on the braid
towards the vortex cores while the SPI-induced vortex is locked on the stagnation
point. The propagation of SSI vortices towards the cores has significant implications
for the collapse of the vortex cores into fully developed turbulence. As shown in
figure 10, SSI vortices distort the outer layers of the cores, exciting various tertiary
instabilities such as Rayleigh–Taylor instability (see the right panels in rows two
and three of figure 10 and Mashayek & Peltier (2012b) for further details). This
enhancement in the breakdown of the cores due to SSI vortices can precede or coexist
with the destructive influence of the SCI.

A comparison between Re = 6000 and 8000 cases in figure 10 reveals a great
similarity between the two cases, with the scales of structures produced by secondary
and tertiary instabilities becoming smaller with Re. Moreover, the number of SSI
vortices increases, and the time of onset of their emergence shifts to earlier times with
increase in Re. Once Re is increased to 10 000, SSI vortices dominate the braid early
on in the evolution of the KH billow and during the roll-up of the cores, and thereby
prevent the SPI vortex from emerging at the stagnation point. Therefore, it seems that
at the assumed values of Ri0 and Pr , SPI can exist only over an intermediate range of
Reynolds number.

The general conclusions based upon the information provided in the graphics of
figures 3 and 10 is that within the range of 750 < Re < 10 000 (for Ri0 = 0.12 and
Pr = 1), numerous secondary instabilities are expected to and do emerge. At low Re,
the pairing instability continues to be a key player which enforces a strong upscale
cascade, while its occurrence seems to be increasingly modified by the emergence
of a group of small-scale instabilities growing in the cores or on the braid as Re
is increased. These secondary instabilities may coexist or may interfere with or even
prevent the emergence of each other depending on the order of their appearance
(which itself is highly sensitive to the background noise in the flow field). The
differences in the underlying dynamics of the turbulent collapse of the mixing layer
due to the emergence of different instabilities can have important implications for
turbulent properties of the flow such as the efficiency of mixing. We will explore this
in the next section.
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FIGURE 12. Same as the right panels in figure 8 but for Re= 8000.

It is also interesting to note that all of the secondary instabilities found in the
non-separable linear stability analyses reported in Mashayek & Peltier (2012a,b) can
be observed in our DNS results. Although some are only observed at Re much higher
than that of the stability analyses (which were performed at Re = 1000 and 2000),
their potential to grow existed even at these lower values of Re. Therefore, further
repetition of the non-separable secondary stability analyses at higher Re (say 10 000
for example) might be useful in predicting the occurrence of even further instabilities
which might exist at even higher Re values.

A comparison of the various Re cases in figure 11 shows that with increase in Re,
more and more energy is pumped into small-scale instabilities emerging inside the
vortex cores, while the braid remains dominated by distinct wavenumbers associated
with the SPI and SSI modes. For Re = 10 000, there is considerable activity at
spanwise wavenumbers above d = 10. This is due to the emergence of new instabilities
at higher Re in the cores (such as LCVI and shear instability of vorticity layers inside
the cores, see Mashayek & Peltier (2012a,b)), and distortion of the vortex cores due
to braid activities (such as the travelling of SSI vortices along the braid and towards
the cores which can excite local Rayleigh–Taylor instability in the outer regions of
the vortex cores). This enhancement of the growth of various 3D perturbations inside
the cores with increase in Re can lead to rapid homogenization of the vortex cores as
compared to the evolution of the braid. As shown in the second panel in the last row
of figure 10, at Re = 10 000, the cores are completely turbulent while a clear braid
layer (with overlying SSI vortices) can still be observed. This might have implications
for the interpretation of observations of shear layers, such as those of Geyer et al.
(2010). Since back-scatter measurements are sensitive to density differences, a side
view (obtained from measurements) of a KH billow such as that of figure 10 for
Re = 10 000 might overemphasize the importance of braid structures simply because
cores have homogenized earlier and faster than the braid regions. This could provide a
simple explanation for the existence of almost no structures inside the cores of the KH
wave trains reported by Geyer et al. (2010).

To compare the energetics of 3D perturbations between high- and low-Re cases,
figure 12 shows a plot similar to those shown in figure 8 but for Re = 8000.
Comparing this plot with those in figure 8 shows that with increase in Re, the
contribution of H3D to σ3D increases due to vigorous overturning of convectively
unstable regions inside the vortex cores. There is also a slight increase in the transfer
of energy from the background KH billow to the 3D perturbation field (the S h
term). However, these two increases are compensated by the increase in negative
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influence (draining of K3D) due to enhanced dissipation (D) and anisotropy in the
field (A ). The latter is due to increase in emergence of various secondary modes
of different origins (buoyancy-driven, shear-induced, strain-induced, etc.) and with
different wavenumbers. The figure also reveals a small negative influence (i.e. transfer
of energy from the 3D field to the background flow) of Reynolds stresses (R3D) during
very early periods of growth of 3D perturbations. Similar to low-Re cases, in the
turbulent phase of the flow (t > t3D), there is a dominant balance between R3D, D3D,
H3D and the anisotropy term (A ), with the latter playing a more important role at
high Re. Therefore, the non-zero contribution of anisotropy breaks down the three-way
balance of R3D–H3D–D3D which underlies (1.1). With inclusion of A in the balance,
the turbulent phase mixing efficiency, which can be calculated from

E 3D = M

M +D3D
≈ H3D

H3D +D3D
= H3D

R3D −A
, (3.1)

is clearly larger than the flux Richardson number Rf =H3D/R3D due to non-zero
anisotropy. This is one of the reasons why the time-averaged turbulent mixing
efficiencies which we will present in the following section will be higher than the
canonical value of 0.2 that has been assumed in inferring the diapycnal turbulent
diffusivity on the basis of ocean microstructure measurements.

4. Route to turbulence, mixing efficiency and effective diffusivity
In this section, we quantify the extent to which emergence of 3D instabilities at

higher Reynolds numbers suppress the pairing process. We also investigate how this
suppression, as well as the increase in the number and growth rate of 3D secondary
modes with Re change the route to mixing and thereby affect the efficiency of mixing
and the effective vertical flux. This will assist in providing a sound answer to the
question posed in the title of this article.

Figure 13 shows plots of time evolution of PSD of the primary KH wave (in
figure 13a) and the pairing mode (in figure 13b) for various Reynolds numbers, all
at Ri0 = 0.12. The primary instability curves follow more or less the same pattern
during the roll-up of the KH wave since growth rate of the KH wave is primarily a
function of stratification. However, the pairing mode curves show that there is a highly
significant reduction in the transfer of energy into the pairing instability with increase
in Re. Consistent with the flow visualization plots shown in the previous section, at
Re= 750, pairing is the only secondary mode growing on the primary KH wave other
than the SCI. From Re = 750 to Re = 1000, however, earlier and faster emergence
of SCI as well as emergence of stagnation point instabilities (see figures 3, 4 and 6
and their corresponding discussions) lead to noticeable suppression in PSDpairing. The
level of suppression remains nearly the same from Re = 1000 to Re = 4000, beyond
which emergence of a number of other modes (such as the SSI, LCVI and other
instabilities they excite inside the vortex cores) results in a further suppression of the
subharmonic mode. This second stage of sharp suppression in PSDpairing is consistent
with observations of figure 10. Although suppression of vortex pairing by stratification
has been long known, figure 13(b) provides clear evidence of the suppression of
pairing by an increase with Re of the number and growth rate of small scale structures.
This agrees with the paucity of observational evidence for vortex mergers in shear
layers at geophysically relevant high Reynolds numbers.

Figure 13(c) plots the time evolution of instantaneous mixing efficiency for the four
cases considered in figure 13(a,b). As discussed in Mashayek & Peltier (2012b),
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FIGURE 13. PSD for the primary KH wave (a) and the first subharmonic wave (b) for various
Reynolds number all at Ri0 = 0.12; the corresponding instantaneous mixing efficiency in (c).

the preturbulent phase of a shear layer lifecycle can be highly efficient in the
vertical mixing of dense and light fluid mostly due to the small dissipation rate
which is characteristic of this stage of flow evolution. During the transition and post-
transition phases of the flows (i.e. t > t2D) mixing can however be greatly influenced
by the details of the underlying dynamics. As mentioned earlier in discussion of
flow energetics, for Re = 750, the turbulent-phase pairing extracts some of its energy
from the K3D reservoir. This leads to a decrease in the effective viscous dissipation
facilitated by small-scale perturbations and thereby leads to an increase in Ei. With
increase in Re and suppression of pairing, the 3D perturbation field becomes more
energetic and this increases the viscous dissipation. However, an energized 3D
perturbation field also enhances diapycnal mixing considerably. The interplay between
these opposing factors (in the sense that one tends to increase and one to decrease
E ) leads to a decrease in the turbulent-phase-averaged E from Re= 750 to Re= 1000
(due to suppression of pairing) and an increase in turbulent-phase-averaged E from
Re = 1000 to Re = 4000 (due to increase in diapycnal mixing M ). From Re = 4000
to higher Reynolds number Ei seems to be only mildly influenced by the increase
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FIGURE 14. Spatially averaged density field after relaminarization of the layer (in (d)) and
spatially-averaged buoyancy frequency after relaminarization of the layer (in (e)) for the same
cases as shown in figure 13. Line colour attributes in (a,b) are the same as figure 13 with the
thin dashed black curves representing the profiles associated with the initial shear layer prior
to roll up of the primary KH wave. The lower row shows the relaminarized-state profiles for
the Re = 6000 case, with the left frame showing the density and velocity profiles, the middle
frame showing the buoyancy frequency squared, and the right frame showing the gradient
Richardson number.

in number and decrease in scales of 3D secondary modes. Figure 13(b) illustrates
the clear and considerable change in efficiency of mixing with the change in the
dynamical processes responsible for turbulence breakdown of the shear layer.

In addition to the influence of vortex merging on mixing properties, this process
also influences the effective entrainment of the high- and low-density fluids located
beneath and above the layer. This is because vortex pairing at small Reynolds number
is associated with significant vertical displacement of the vortex cores and this results
in ‘thickening’ of the mixed layer. However, with increase in Re and subsequent
suppression of pairing, the effective ‘thickness’ is expected to decrease. This is shown
in figure 14(a) which shows spatially averaged profiles of the density field at late
stages in the lifecycle of the shear layers in which K3D has decayed and the flow
has relaminarized. For Re = 6000, the final layer thickness is approximately 50 %
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less than the thickness for the Re = 750 case. Moreover, the layer seems to be more
well-mixed at lower Re while an intermediate step forms in the middle of the layer
for high-Re cases. This is better demonstrated in figure 14(b) of the figure which plots
the N2 profiles for the same cases. The strong double peak associated with Re = 6000
becomes even larger and sharper for Re = 8000 and 10 000 (not shown here) which
suggest that the resulting density profile would most probably be susceptible to a new
cycle of primary and secondary shear instabilities if a sufficiently sheared mean flow
were to be imposed. The bottom row in figure 14 shows volume-averaged profiles
of density, streamwise velocity, buoyancy frequency squared and gradient Richardson
number for the relaminarized flow of the case for Re = 6000. The left frame shows
that the resulting velocity profile is also layered. This profile, however, is subject to
change as the shear forcing changes due to time evolution of the background flow. The
right panel shows that Ri0 > 0.25 at all depths, meaning that the laminarized flow is
stable to shear instabilities, and therefore new forcing is required to enable a second
lifecycle of shear instability. It is well-known that the final state of a KH billow leads
to bulk Richardson numbers of greater than 0.25 (see Smyth & Moum 2000 for a
discussion). The stability of the laminarized density profiles (figure 14a) depends on
the nature of the shear imposed on them which itself depends on the nature of the
shear layer environment. For example, for shear-induced wave trains growing at the
peaks of low-frequency internal-tide-induced internal waves in the deep ocean, one
can imagine the existence of a continuous but modulating shear forcing induced by
the tides. Further investigation of the stability properties of profiles such as that in
figure 14(e) is not the focus of the present work but it is interesting to point out that
formation of a three-layer density structure from an initially two-layer profile after
one cycle of shear instability opens the door for primary shear instabilities specific to
multilayer systems (Caulfield 1994; Lee & Caulfield 2001).

From a practical perspective, perhaps the most important quantity related to a
shear layer is the vertical flux of tracers across the layer. This vertical flux is
often parameterized through the introduction of subgrid-scale mixing representations
in ocean general circulation models (OGCMs). To investigate the influence of specific
transition scenarios (associated with the dominance of various secondary instabilities
on the transition process) on the vertical flux, we plot the total and perturbation
vertical buoyancy flux for the four cases considered previously (in figure 13) in
figure 15. During the period t < t2D, total flux is dominated by that associated with
the roll-up of the primary KH wave and consists of a large upward flux followed by
a smaller downward net flux. At low Re, vortex pairing also contributes significantly
to the upward flux. With increase in Re and suppression of pairing however, the post
transition total buoyancy flux (for t > t3D) becomes dominated by the flux associated
with the small-scale turbulent motions. It is also important to note the decrease in
the t2D − t3D gap with increase in Re. As shown for Re = 8000 and 10 000 in the
previous section, for sufficiently high Re, K3D begins to grow prior to t2D and leads to
rapid collapse of the layer and complete suppression of an upscale cascade of energy.
However, the net upward flux associated with the roll-up of the primary shear mode
is significantly larger in magnitude than the turbulent phase buoyancy flux, although
it occurs over a short period of time. We will shortly assess the error introduced
by exclusion of this portion of vertical flux in the calculation of the total flux at
geophysically plausible Reynolds numbers.

To examine the applicability of relation (1.1) to the problem of predicting the
effective diffusivity of shear-induced turbulence, we apply it in the analysis of the
results of our numerical simulations of turbulent shear-layer collapse. Figure 16 shows
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FIGURE 15. (Colour online) Time evolution of total and perturbation buoyancy fluxes for the
four cases considered in figure 13: (a) Re = 750, Ri0 = 0.12; (b) Re = 1000, Ri0 = 0.12;
(c) Re = 4000, Ri0 = 0.12; (d) Re = 6000, Ri0 = 0.12. Colour coding is also the same as
figure 13. The two dashed lines in each panel represent t2D and t3D.

plots of κ calculated using (1.1). Two sets of calculations are performed based on this
formula: in one we keep mixing efficiency constant at the commonly used value of
0.15 and in the second we use the actual time series of mixing efficiency calculated
for each case based on the simulation results. The two calculations are tested against
an accurately defined effective diffusivity calculated on the basis of buoyancy fluxes
which were plotted in figure 15 and by using the following relation

〈ρw〉 = κ dρ̄
dz
, (4.1)

where ρ̄ is the background density.
Left panels of figure 16 show the three calculated diffusivity profiles while the right

panel in each row shows a close-up of the turbulent phase (t⇒ t3D) of the curves.
At all Reynolds numbers, there are significant differences between the black curves
and the Osborn-relation-based predictions for an entirely expected reason: namely that
relation (1.1) is based upon the assumption of statistically steady turbulent flow and
is therefore not expected to be applicable for the pretransition phase of flow evolution.
The early period of strict inapplicability of (1.1) is much more extended at lower
Reynolds numbers as t3D is inversely related to Re. Moreover, a prominent presence
of pairing instability at low Re hinders the transition to semi-isotropic stationary
turbulence by both breaking the isotropy assumption and by extracting energy out
of the 3D perturbation kinetic energy reservoir. With increase in Re, however, the
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FIGURE 16. Effective diffusivity calculated by using (4.1) in black lines, and by using
Osborn relation (1.1) with E = 0.2 in red lines and with considering the actual time history
of E in green lines. Each row corresponds to one of the cases discussed in figures 13 and 15.
The right panel in each row is a close-up of the turbulent phase (i.e. t > t3D) of the left panel:
(a,b) Re = 750, Ri0 = 0.12; (c,d) Re = 1000, Ri0 = 0.12; (e,f ) Re = 4000, Ri0 = 0.12; (g,h)
Re= 6000, Ri0 = 0.12.
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difference between the predictions of (1.1) and the accurate flux becomes more limited
to the early roll-up stage of the shear instability. However, this difference remains an
important contributor to the error in total flux that one would make by using (1.1).
The expanded resolution versions of the turbulent phase of the diffusivity curves (in
the right panels) show that well into the turbulent phase of flow evolution, relation
(1.1) gives a good estimate of the effective diffusivity. Most observational evidence
obtained in support of κ has been limited to turbulent flows since preturbulent large-
scale motions prior to transition to turbulence are not meant to be measured by
microstructure measurement techniques. However, figure 16 shows that a large vertical
flux is associated with less turbulent, more coherent large structures which develop
prior to transition to turbulence. Therefore, insofar as the vertical flux is concerned,
there is an error associated with the early stages of flow evolution which includes the
roll-up process and vortex pairing. As discussed earlier however, with increase in Re,
pairing is suppressed and the roll-up process becomes shorter and the fully developed
turbulent contribution to the total flux is therefore expected to dominate the total flux.

To quantify the errors in a time-averaged sense, we plot time-averaged cumulative
mixing efficiency versus Reynolds number in figure 17(a). Two curves are plotted
one for Ec integrated over the whole lifecycle of shear-layer evolution and one
only integrated over the turbulent phase of the flow. The result shows that only
the post-transition integrated efficiency at low Reynolds numbers is in the conventional
range of 0.15–0.2 (as was illustrated in Caulfield & Peltier (2000)). However, with
increase in Re, E post3D

c initially decreases (due to suppression of pairing) and then
increases (due to more efficient diapycnal mixing energized by the emergence of a
large number of 3D instabilities) leading to values in excess of 0.3. Therefore, even if
the preturbulent phase of the flow becomes short and negligible at very high Reynolds
number (an assumption which we have not attempted to address directly in this paper),
E = 0.15–0.2 seems to be low for shear-induced mixing.

Figure 17(b) shows a plot similar to figure 17(a) but for the total viscous dissipation.
At low Reynolds numbers, time-averaged dissipation is dominated by KH roll-up and
the pairing process due to lack of emergence of 3D instabilities during later times of
flow evolution. Increase in Re, however, leads to partial suppression of pairing (and
its associated enhanced dissipation) and emergence of the SPI. Rapid introduction of
spanwise small-scale structures associated with the SPI leads to the post-transition
dissipation dominating the lifecycle-averaged dissipation. Further increase in Re leads
to significant suppression of pairing and emergence of other small-scale instabilities
(such as the SSI, LCVI etc.). In this high-Re regime (beyond Re = 6000), the
preturbulent phase of flow evolution is much shorter than the turbulent phase, and
D is completely dominated by turbulent phase contributions.

Figure 17(c) shows time-averaged (over the whole lifecycle of unstable shear layer
evolution) values of κ for the profiles shown in figure 16. The differences between
the curves in this figure illustrate the errors introduced into estimates of the vertical
buoyancy flux due to different contributors discussed above: the difference between
the solid black curve and the dashed black curve is entirely due to ignoring the
preturbulent flux. This large contribution does not seem to become negligible within
the Reynolds number range explored in this paper, suggesting that even though
the preturbulent phase of flow evolution becomes shorter with increase in Re, its
contribution to total buoyancy flux remains important. The difference between the
dashed black curve and the red curve, both of which correspond to the fully developed
turbulent phase of the flow, is only due to the error associated with the isotropy
assumption that underpins relation (1.1) since a time-variable mixing efficiency is
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FIGURE 17. (a) Cumulative mixing efficiency (spanning both pre- and post-turbulent phases
of the flow) shown as a solid black line and post-transition cumulative efficiency (only
spanning the turbulent phase of the flow) shown as a dashed black line as a function of
the Reynolds number. (b) Total dissipation D averaged over both pre- and post-turbulent
phases in solid black and D averaged only over the fully developed turbulent phase in dashed
black line. (c) Plotted against the Reynolds number are: the time-averaged (over the lifecycle
of the shear layer) effective diffusivity calculated by using (4.1) in black, post-t3D time-
averaged effective diffusivity calculated from (4.1) in dashed black line, effective diffusivity
calculated from Osborn’s relation (1.1) with time-dependant E in red and Osborn’s relation
with E = 0.15 in blue.

employed in (1.1) to obtain the red curve. The time history of mixing efficiency is
often not known in practical applications of relation (1.1). Therefore, the difference
between the dashed black line and the blue line (which is obtained by using
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Re 750 1000 2000 4000 6000 8000 10 000

Reb 82 108 188 383 433 502 610

TABLE 2. Turbulent phase buoyancy Reynolds numbers.

relation (1.1) along with the often used mixing efficiency value of E = 0.15) should be
considered as a practical measure of the error associated with employing relation (1.1)
with the canonical value of 0.2 for E /(1 − E ) (or 0.15 for E ) to a fully developed
shear-induced turbulent layer. This error, which amounts to an under-prediction of
the flux by almost 100 %, is primarily due to the low constant value used for E .
According to figure 16(a), a value of E ∼ 1/3 would lead to better predictions for
our cases. It is important to note that the relatively large variations in diffusivity
curves in figure 16(c) follow the variation of the dissipation curves in figure 16(b)
which was explained in terms of the emergence of different modes of instability at
various Reynolds numbers. The mixing efficiency in figure 16(a) seems to be less
variable at sufficiently large Reynolds numbers. It is also important to note that the
agreement between the actual effective diffusion and that obtained by using the Osborn
formula along with E = 0.15 is good in the low-Reynolds-number regime, but that
it deteriorates with increase in Re. Therefore, our results suggest that emergence
of a large number of secondary instabilities, along with suppression of the pairing
instability at high Reynolds numbers, lead to deviation of the turbulent phase energy
balance upon which the Osborn formula is based.

At this stage, we can assess the extent to which the turbulent mixing represented
by the numerical experiments described in this study might be of relevance to shear-
induced mixing in the oceans. A relevant parameter for this purpose is the buoyancy
Reynolds number defined as Reb =D/(νN2) which is a measure of the scales available
to turbulence. More precisely, Reb is the ratio of the scale of the largest eddies
which are allowed to overturn before becoming suppressed by stratification (the
Ozmidov scale) to the scale at which overturning is precluded by viscous forces
(the Kolmogorov scale). Various studies have suggested that for stratified turbulence to
be maintained, Reb has to be larger than a critical value which is approximately 20
(Gregg 1987; Stillinger, Helland & Van Atta 1983; Smyth & Moum 2000). Various
observational studies have measured the buoyancy Reynolds number and have shown
that it is O(102–103) in the oceanic thermocline or in energetic estuaries and inlets
(Gargett, Osborn & Nasmyth 1984; Moum 1996; Geyer et al. 2010). In table 2, we
present the Reb values corresponding to cases considered in this section. Each value
has been calculated at a short time after the saturation of the turbulent perturbation
field. For all cases, Reb remains of the same order as the value presented in the
table for a considerable length of time (of the total lifecycle of the KH billow)
before diminishing as turbulence decays. As the numbers in the table suggest, Reb

spans nearly a decade in our simulations and lies well within the range suggested
by the oceanographic observations. Interestingly, the new relatively high-Reb regime
considered in this study (as compared with earlier DNS studies), coincides with the
range in which a large number of secondary instabilities (absent in low-Re flows)
emerge in the flow and prevent a direct upscale cascade through vortex merging.
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5. Influence of stratification
It is well-known that background stratification can have a significant influence on

the evolution of a mixing layer. Specifically, strong stratification can suppress vertical
buoyancy flux by inhibiting vertical motions. This influence has been incorporated in
various parametrization schemes for shear-induced mixing. Theoretical studies have
also shown that the growth rate of primary shear instability (KH or other types) is
primarily a function of Ri0 (Corcos & Sherman 1976; Mashayek & Peltier 2012b).
Large stratification slows the growth of the primary wave. The vertical extent of the
primary instability at its maximum amplitude is inversely related to the stratification
and so is the extent of vertical entrainment of the layer after turbulent collapse. It was
shown in Mashayek & Peltier (2012b) that stratification has a significant influence on
the type and growth rate of secondary instabilities which grow on a primary wave.
In particular, large stratification greatly suppresses vortex mergers due to inhibition of
vertical motion, and it promotes the SCI of the cores (due to increase in the effective
Rayleigh number across the unstable regions); it also promotes the SSI of the braid (by
reducing the braid effective gradient Richardson number and also by diminishing the
negative influence of the strain field on SSI), and it demotes the SPI (by diminishing
the strength of the strain field from which the instability extracts its energy).

In the previous sections of this paper we showed that the Reynolds number may also
influence the relative importance of these various modes of secondary instability (it
promotes SCI and SSI, while SPI exists over an intermediate range of Re). Therefore,
the path of the mixing layer from a laminar state to turbulence can be very different
from one point to another in the Re–Ri0 parameter space. To illustrate the combined
influence of Re and Ri0, we compare cases with low stratification (Ri0 = 0.04) and
high stratification (Ri0 = 0.12, a high value in the context of KH instability) for
various Reynolds numbers in figure 18. There are two primary differences between the
low Ri0 and high Ri0 cases: first, vortex pairing in the form of two vortices orbiting
each other before merging into one is observed for low Ri0 whereas it is suppressed by
high stratification in the Ri0 = 0.12 cases; second, 3D perturbations in low-Ri0 cases
are primarily due to SCI, whereas at higher Ri0, a number of stratification-induced
secondary instabilities grow on the braid (such as SSI and SPI vortices) and/or in the
cores (such as SVBI and LCVI). Therefore, the spanwise wavenumber spectrum of the
high-Ri0 cases is broader during the transition phase, which might have implications
for the isotropy of turbulence and the efficiency of the related mixing.

Comparing cases with different Re at Ri0 = 0.04, we observe an earlier emergence
of 3D perturbations on the background KH wave with increase in Re. For Re = 750,
at the onset of growth of K3D, pairing is well underway whereas for Re = 10 000, the
K3D field is almost saturated by the time vortex cores begin to pair. This leads to
early corrosion of vortex cores and suppression of the vertical motion associated with
the pairing instability. This is consistent with the analyses presented in the previous
section by means of spectral decomposition of the flow in the streamwise direction.
It seems very likely that at even higher Re, 3D modes such as SSI and SCI may
grow so early in flow evolution so as to completely prohibit the pairing instability
through early and rapid destruction of the KH billow, similar to what is shown in the
right column of the figure for Ri0 = 0.12 cases (and which was discussed in detail in
the last section). Our results suggest that for Ri0 = 0.04, a higher Re than 10 000 is
required to suppress the pairing mode to the extent that was observed in figure 13(b)
by Re = 8000. However, such high Reynolds numbers are guaranteed to occur in
geophysical environments. Therefore, in free shear layers in stratified oceans (although
perhaps not in gravity currents), it is unlikely that pairing instability could play a
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x
y

z

FIGURE 18. Influence of stratification at various Reynolds number on the evolution of the
mixing layer.

dominant role in the transition process unless the flow were essentially unstratified (so
that the ‘zoo of secondary instabilities’ specific to stratified flows would not exist),
or there are perturbations (e.g. waves) in the environment which specifically favour
vortex mergers. For the case of overflows and gravity currents, interactions between
primary shear waves and the bottom boundary can facilitate relative streamwise motion
between vortex cores which would help initiation of ‘leapfrogging’ motion of vortices
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FIGURE 19. Comparison of energetics of evolution of 3D perturbations for low- and
high-stratification cases both at Re= 10 000.

which can lead to them merging. This depends upon specific characteristics of the
overflow (such as its depth). Therefore, our conclusions regarding the suppression of
vortex merging with increase in Ri0 should not be extended to such flows.

To provide some quantitative information on the influence of the stratification on
the energetics of the 3D perturbation field, figure 19 compares two cases, both with
Re = 10 000 but with different values of Ri0. The main message of this figure is that
3D perturbations begin to grow earlier than the saturation time of the KH billow (t2D)
once Ri0 is sufficiently large. This is due to promotion of both SCI in the vortex
cores and SSI on the braid with increase in Ri0. Therefore, as mentioned earlier
with regards to interpretation of the observations of Geyer et al. (2010), it may well
be that high values of Ri0 and Re in the flows they examined had excited very
early growth of 3D secondary instabilities leading to rapid homogenization of density
and vorticity inside the vortex cores, leaving braid regions as dominant components
of the back scatter signal. This is a conjecture that should be subject to further
investigation. Another important point can be made based on figure 19: due to the
action of vortex pairing at Ri0 = 0.04, namely that the flow stabilizes eventually into
a ‘balanced’ turbulent state (in which the balance is between R3D and D3D), and
therefore the commonly used correlations which relate dissipation to vertical diffusivity
(by assuming a steady isotropic flow and a R3D–D3D balance) becomes relevant over
an even shorter time window of the lifecycle of the mixing layer (as compared with
that which characterizes the Ri0 = 0.12 case).

Finally, as a further demonstration of the significance of route to turbulence for
mixing, we compare the influence of pairing on mixing efficiency and the effective
vertical flux for two cases with Ri0 = 0.04 and Ri0 = 0.12 both for Re = 4000 in
figure 20. Figure 20(a) compares the PSDs for the pairing mode as well as the
primary KH wave (thin lines) between the two cases. Clearly, at low stratification
the pairing mode dominates the power spectrum. This is associated with the pairing
in the classical form, which involves orbiting of vortices prior to merging and which
involves significant vertical motion and entrainment. For the intermediate stratification
case (Ri0 = 0.12), however, the upscale component of the energy cascade involves
much less vertical motion. Nevertheless, it was shown in the last section that the
upscale turbulent cascade (which is increasingly strongly suppressed with increase in
Re) has important implications for mixing properties. Figure 20(b) shows that low-Ri0

pairing leads to higher mixing efficiency due to increased diapycnal mixing (due
to significantly increased stirring of the flow because of the orbiting and merging
motion of the vortices) at a lower-energy dissipation rate (due to lack of activity
of stratification-specific secondary modes which exists at higher Ri0, and also due
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FIGURE 20. Investigating influence of stratification through Comparison of two cases with
Ri0 = 0.04 and Ri0 = 0.12 both for Re= 4000: PSD in (a), instantaneous mixing efficiency in
(b) and total buoyancy flux in (c).

to slight suppression of K3D because of vortex pairing). Figure 20(c) illustrates the
significant impact of vortex pairing on the buoyancy flux for the low stratification case.
Therefore, consistent with the well-known inverse influence of stratification on vertical
flux, mixing at low stratification can be more efficient and the effective flux can be
larger. Therefore, the nature of shear-induced mixing at pycnocline depths in the ocean
interior (with high stratification) can be very different from that which occurs in less
strongly stratified regions of the deep ocean. Table 3 compares the effective diffusivity
and efficiency of mixing values for the two cases discussed in figure 19 as well as for
two cases at a lower Reynolds number.

6. A note on the combined influence of Pr, Re and Ri0
Although Pr was fixed to one throughout this work, we are nevertheless in a

position to offer some comment on the combined influence of Pr , Re and Ri0
on the nature of the turbulence transition based on work of Mashayek & Peltier
(2012a, 2011b). It was shown in Mashayek & Peltier (2012a) (by means of predictions
based upon the use of an heuristic model) that increase in Pr has a suppressing
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Re Ri0 〈ρw〉/(dρ̄/dz) κOsborn,
E = 0.15

κOsborn,
E = E (t)

Ec Ec, post-t3D

750 0.04 7.4× 10−4 1.7× 10−4 2.5× 10−4 0.35 0.3
750 0.12 5.1× 10−4 1.9× 10−4 2.2× 10−4 0.3 0.2
4000 0.04 14.9× 10−4 2.9× 10−4 6.5× 10−4 0.5 0.5
4000 0.12 6.19× 10−4 2.3× 10−4 3.3× 10−4 0.36 0.29

TABLE 3. Influence of stratification on mixing efficiency and effective diffusivity. All
parameters were defined in § 4 (see figure 16 and the related discussions).

influence on the SSI (by increasing the effective gradient Richardson number of the
braid), a promoting influence on SPI (by increasing the strength of the strain field
from which SPI extracts its energy) and a slight promoting influence on SCI (by
slowing down the decay of the density difference across the core unstable regions).
Therefore, within the ranges of Pr associated with atmospheric flows or thermally
stratified oceanic flows (such as those of van Haren & Gostiaux (2010, 2012)), the
following changes are expected to be characteristic of any of the cases considered in
this study: at a constant Re and Ri0, increase in Pr will lead to reduced SSI activity
on the braid, a stronger SPI vortex at the stagnation point and a dominant role played
by SCI in the transition process. As shown by Mashayek & Peltier (2011b), increase
in Pr also promotes the intensity of core activity such as SSI of the vorticity layers
inside the cores, and Rayleigh–Taylor instability. This, along with the suppression
of the SSI on the braid with increase in Pr implies the increased importance of
the homogenization of the core region relative to that of the braid with increase in
Pr . This gives further support to our conjecture that the lack of existence of core
structure in the observations of KH waves by Geyer et al. (2010) is due to early
homogenization of cores since their observations were made in salt stratified estuaries
with very high Prandtl numbers.

7. Discussion and conclusions
We have herein studied the influence of Re and Ri0 on the mechanisms responsible

for the turbulence transition and related mixing in free shear layers using high-
resolution numerical simulations. The range of Re values considered was high
compared with those which have previously been employed in the existing body of
numerical studies and this has enabled us to establish a much closer connection to
geophysical shear layers.

The theoretical predictions of Mashayek & Peltier (2012a,b) regarding the type and
characteristics of secondary instabilities which are expected to grow on a KH billow
were verified using these quantitative analyses. It was shown that most mechanisms
responsible for turbulent collapse of the shear layer at sufficiently high Re are
highly three-dimensional. Therefore, any implications of the results of 2D numerical
experiments (which are prevalent in the literature) for mixing in shear flows should
be regarded with scepticism. Specifically, it has been shown that three-dimensional
instabilities such as the SCI of the core (Klaassen & Peltier 1985b) and SPI of the
braid (Mashayek & Peltier 2012a) both play a critical role in turbulence collapse of
the mixing layer with the former playing the dominant role. Even though secondary
shear induced vortices on the braid were shown to proliferate, to grow more rapidly
and to arise earlier in flow evolution with increase in Re, the SCI remains the
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dominant mode in mediating transition within the Re–Ri0 parameter range explored
in this study. It was also shown that braid instabilities such as the SSI may also
excite the onset of several additional instabilities (such as SCI, or Rayleigh–Taylor
instability) inside the cores. In fact, it was predicted in Mashayek & Peltier (2012a)
and verified in this work that the vorticity layers inside the core can become shear
unstable themselves, provided that Re is sufficiently high (at a given Ri0 and Pr). It is
conceivable that for extremely high Reynolds numbers, the initial vorticity layer from
which the KH billow evolves might become secondary shear unstable very early in
flow evolution, leading to rapid homogenization of the cores. Alternatively, it might
well be that the cores become homogenized prior to the development of the braid
through a series of secondary instabilities as was shown for the Re > 4000 cases of
this study. Both possibilities might be contributing to the absence of core structures in
the oceanic observations of KH waves reported in Geyer et al. (2010).

Our study has been focused upon the characteristic change in the nature of the
transition to turbulence that occurs from low Reynolds numbers (associated with
laboratory experiments and the existing body of numerical studies) to high Reynolds
numbers (associated with geophysical flows). Laboratory and numerical experiments
have established that at relatively low Reynolds numbers, a number of large-scale
instabilities (such as 2D or 3D vortex interactions such as pairing or formation of
vortex tubes) play key roles in the turbulent collapse of the shear layer, and that
secondary core instability is the dominant mode responsible for introducing small-
scale 3D perturbations into the flow field. At high Re, however, a large number
of secondary instabilities, the number of which increases with Re, emerge on the
background primary KH instability. The growth rate of these instabilities increases
and their time of formation becomes earlier with increase in Re. It was shown
that at sufficiently high Re, primary vortex cores break down to turbulence very
rapidly upon formation through emergence of a number of small-scale secondary
instabilities and the inverse cascade through vortex-merging instabilities is also thereby
suppressed. This is summarized in figure 21 which illustrates a two-stage suppression
of the inverse cascade with increase in Re. Although the suppressing influence of
stratification on vortex pairing has long been known, the analyses reported here are
believed to be the first to demonstrate that the turbulent collapse of the billow itself
has a similarly inhibiting influence on the upscale cascade of energy as the Reynolds
number increases. This has implications for the relevance of the body of literature
on vortex-merging instabilities for geophysical flows. This view also appears to be
consistent with lack of observations of vortex mergers in observed KH wave trains in
geophysical environments (Geyer et al. 2010; van Haren & Gostiaux 2010; Luce et al.
2010; Fukao et al. 2011).

We have demonstrated herein that the ‘route to turbulence’ matters insofar as
several important characteristics of shear turbulence (such as the efficiency of
diapycnal mixing and the related effective diffusivity) are concerned. It was shown
that the number of secondary instabilities which grow on a background primary
shear instability, and their order of appearance have significant implications for
flow characteristics such as the onset of transition, the extent to which the flow is
isotropic and the extent to which the turbulent phase is stationary. These analyses
have established that the breakdown of certain assumptions built into commonly
employed correlations used to infer eddy diffusivities can lead to significant errors.
More specifically, we examined relation (1.1) as an example of a commonly employed
relationship and showed that its predictions for effective diffusivity are in acceptable
agreement with those calculated accurately from numerical simulation only in the
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FIGURE 21. Maximum PSD for the pairing instability for various Reynolds numbers all at
Ri0 = 0.12. The circles correspond to the peaks of the curves in figure 13(b).

fully developed turbulent phase. However, insofar as the vertical flux of buoyancy
is concerned, such relations introduce large errors by ignoring the early stages of
flow evolution in which the flow is more coherently structured and less isotropic and
stationarily turbulent. This was shown to be the largest source of error according
to our analyses. Another source of error often associated with observational-based
estimates made through the use of relation (1.1) is in measurements of the rate
of energy dissipation which has not been fully discussed in the present paper. Our
estimates of effective diffusivity are in the range of those associated with the abyssal
ocean implying a consistency with the increasingly stronger assumption that shear
instability is one of the primary mechanisms responsible for deep ocean mixing at the
subgrid scale in OGCMs.

Even though our analyses show that the efficiency of mixing can differ significantly
(by more than 200 %) over the range of parameters considered herein, it seems that
the dissipation rate partially adjusts itself in such a way that the affect of variations in
efficiency is not as significant on the calculated diffusivities. Therefore, our analyses
show that a mean value of E ∼ 1/3 along with relation (1.1) should provide acceptably
high-quality predictions of time-averaged effective diffusivity for sufficiently high
Reynolds numbers, provided that the proper time history of dissipation rate is
employed in the relation. Since this is not feasible in the context of large-scale
oceanographic modelling, estimates of shear-based effective diffusion of buoyancy
made from observations will suffer not only for the reasons explained above, but also
from the lack of correlation between the rate of energy dissipation and the efficiency
of mixing in the available parametrization schemes. Moreover, it is important to note
that the assumption of isotropy behind the Osborn formula needs to be analysed in
more detail since our analyses revealed a non-significant contribution of anisotropy
to the energy balance of the perturbation field in the turbulent phase of the flow.
The value of 1/3 suggested herein agrees surprisingly well with the predictions of
Caulfield, Tang & Plasting (2004) for an upper bound on the efficiency at high
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FIGURE 22. Comparison of the time-averaged (over the turbulent phase of the flows)
buoyancy flux (a) and mixing efficiency (b) values obtained from the numerical experiments
discussed in this work and theoretical predictions of Caulfield et al. (2004) for upper bounds
on the two parameters as a function of the Reynolds number.

Reynolds numbers. This is shown in figure 22(b). Also shown in the figure is
a comparison between the corresponding turbulent buoyancy fluxes. The study of
Caulfield et al. (2004) considered plane Couette flows as a basis for calculation of
the upper bound, and the methodology used therein makes it hard to assess the role
of walls on the mixing process. If it could be shown that the role of the walls
was negligible, then figure 22 can be taken to suggest that high-Re KH billows
discussed herein mix as efficiently as possible. It will be of interest to investigate
whether this is a characteristic of KH waves in particular, or whether other primary
shear instabilities may mix as efficiently. Moreover, it will be important to study
not just one, but multiple lifecycles of instability of shear layers to obtain a mixing
efficiency averaged over a sufficiently long period to enable a direct comparison to
estimates of efficiency and diffusivity based on observations. Therefore, until further
studies are performed, this study together with that of Caulfield et al. (2004) provides
strong evidence that the often employed universal value of 0.2 for E needs to be
revised.

Finally, we will summarize the work reported herein with five concluding remarks.
First, the route to turbulence can be an important factor in the determination of
turbulence properties. Although this might not be encouraging insofar as turbulence
parametrization is concerned, it cannot be ignored. Second, the assumption that
turbulence efficiency may be well-approximated by the value E = 0.2 is suspect
based upon the evidence provided herein. Furthermore, there is no reason to believe
that the globally averaged value for E may be approximated as 0.2 either and this
can be an important source of error in estimates of ocean energy budgets. Proper
parametrization of the efficiency of mixing based on background flow parameters
such as the stratification level, shear and strain will improve estimates of mixing
properties greatly both at small scale and on the global scale. Third, this work along
with that reported in Mashayek & Peltier (2012a,b) demonstrates that there is a
characteristic change in the properties of shear-induced turbulence as the Reynolds
numbers increases from the low values characteristic of laboratory experiments to
the much higher Reynolds numbers associated with geophysical flows. This is due
primarily to the suppression of the inverse cascade of energy with increase in
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FIGURE 23. Lexicon of various secondary instabilities discussed in Mashayek & Peltier
(2012a,b). Each frame contains the reference to the original study which provides details
of its corresponding instability. The horizontal and vertical axes correspond to x and z
coordinates, respectively. The underlying background KH wave is shown in the first panel
to provide the reference of the KH wave basic state in terms of which the location of each
instability is illustrated in other frames of the figure.

Reynolds number because of the emergence of small-scale structures which only
exist at sufficiently high Reynolds numbers. Fourth, this work along with Mashayek
& Peltier (2012a,b, 2011b) demonstrates that the combined influence of Reynolds,
Richardson and Prandtl number on stratified shear turbulence is complex due to the
influence of each of these parameters on the route to turbulence through their influence
upon the types and number of secondary and higher-order instabilities which grow
on the primary shear instability. Thus, any parametrization of shear mixing should be
inclusive of all the primitive parameters involved in the definitions of Re, Pr and Ri0.
Finally, it is also important to note that the remarks made in this concluding paragraph
are not specific to a particular shear instability. Numerous shear-induced processes
which lead to diapycnal mixing in the ocean are periodic or episodic in nature and
involve various stages of flow evolution with the coherence of flow structures, level
of turbulence and properties of turbulence varying significantly between the various
stages.
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FIGURE 24. (Colour online) Comparison of the left-hand side (dashed) and right-hand side
(solid black with circles) of (2.18) for two cases of table 1.

Appendix A. Secondary instability names
There are frequent references to various secondary instabilities in this article by

using their corresponding acronyms. Figure 23 provides a secondary instability lexicon
to help reminding the reader of what instability each acronym refers to.

Appendix B. Verification of the accuracy of numerical simulations
Figure 24 shows a comparison of the left-hand side and right-hand side of (2.18) for

two cases of table 1. Note that the two sides of (2.18) are independently calculated
from simulation results. The slight differences at the peaks of the curves is due to the
fact that left-hand side of equation is calculated using central difference differentiation
of the instantaneous kinetic energy of the calculation. Thus, the accuracy of the plotted
left-hand side depends heavily on the frequency of saving of output files during the
simulation. This frequency is limited by computational resources. During time intervals
of large gradients (such as the peaks in figure 24), fewer data points would result in
error in calculation of σ3D (and not of the simulation itself). More frequent saving of
output files would improve the agreement between the curves at their peaks. Figure 24
clearly shows that the flows are resolved throughout flow evolution and particularly
during the turbulent phase (i.e. beyond the curve peaks).
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